Обратные задачи динамики в групповых переменных
В монографии развиваются идеи А. Пуанкаре об описании движения механических систем с неевклидовым пространством конфигураций посредством уравнений в так называемых групповых переменных, также развиваются результаты работ Н.Г. Четаева, посвящённые голономным системам. Направление в аналитической механике, получившее интенсивное развитие одновременно со ставшими классическими задачами естествознания, а именно, обратные задачи динамики, здесь изучаются с позиций решения уравнений движения в групповых переменных. Представление движения неконсервативных и неголономных систем в результате решения уравнений в форме Пуанкаре-Четаева даёт возможность исследователям строить обобщённый лагранжиан и обобщённый гамильтониан при условии самосопряжённости механической системы. Теория обратных задач динамики охватывает в монографии задачи построения функционала действия по свойствам движения, заданным в виде интегрального многообразия и группы симметрий системы. Монография снабжена рядом примеров решения интересных и трудных задач и будет полезна специалистам в области аналитической механики и теории обратных задач динамики.
Автор | Гафаров Геннадий Григьрьевич |
Издательство | ООО "Физматлит" |
Дата издания | 2014 |
Кол-во страниц | 120 |
ISBN | 978-5-9221-1597-1 |
Тематика | Механика (н) |
№ в каталоге | 1720 |
Категории: Научная литература