Уравнение Смолуховского
Изложена теория корректности задач для уравнения Смолуховского, моделирующего процессы коагуляции (слияния) частиц в дисперсных системах. Рассмотрены пространственно однородные и неоднородные задачи. Доказаны теоремы глобальной разрешимости и корректности задач Коши. Описываются эффекты перехода соотношения сохранения в соотношение диссипации и выявляются их связь с возникновением негладких особенностей решений. Предложены приближенные методы решения задач и приведено их обоснование. В классах функциональных решений описан подход к выделению условий корректности задач для уравнений больцмановского типа, включающих в себя классические уравнения Больцмана кинетической теории газов и Смолуховского кинетической теории коагуляции. Для научных работников, преподавателей, аспирантов и студентов, занимающихся математическими исследованиями моделей в физической кинетике, коллоидной химии, биологии.
| Автор | Галкин В. А. |
| Издательство | ООО "Физматлит" |
| Дата издания | 2001 |
| Кол-во страниц | 336 |
| ISBN | 978-5-9221-0208-7 |
| Тематика | Математика. Прикладная математика (н) |
| № в каталоге | 208 |
Категории: Научная литература